Presentations

Home / Papers / Projects / Presentations / Posters

\( % Universal Mathematics \newcommand{\paren}[1]{\left( #1 \right)} \newcommand{\brackets}[1]{\left[ #1 \right]} \newcommand{\braces}[1]{\left\{ #1 \right\}} \newcommand{\norm}[1]{\left\lVert#1\right\rVert} \newcommand{\case}[1]{\begin{cases} #1 \end{cases}} \newcommand{\bigO}[1]{\mathcal{O}\left(#1\right)} % Analysis % Linear Algebra \newcommand{\mat}[1]{\begin{pmatrix}#1\end{pmatrix}} \newcommand{\bmat}[1]{\begin{bmatrix}#1\end{bmatrix}} % Probability Theory \DeclareMathOperator*{\V}{\mathop{\mathrm{Var}}} \DeclareMathOperator*{\E}{\mathop{\mathbb{E}}} \newcommand{\Exp}[2][]{\E_{#1}\brackets{#2}} \newcommand{\Var}[2][]{\V_{#1}\brackets{#2}} \newcommand{\Cov}[2][]{\mathop{\mathrm{Cov}}_{#1}\brackets{#2}} % Optimization \newcommand{\minimize}{\operatorname*{minimize}} \newcommand{\maximize}{\operatorname*{maximize}} \DeclareMathOperator*{\argmin}{arg\,min} \DeclareMathOperator*{\argmax}{arg\,max} % Set Theory \newcommand{\C}{\mathbb{C}} \newcommand{\N}{\mathbb{N}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\Z}{\mathbb{Z}} \)

When MAML Can Adapt Fast and How to Assist When it Cannot
Slidelive presentation of our work on helping MAML learn to adapt. Presented at the 2021 International Conference on Artificial Intelligence and Statistics (AISTATS21), held remotely. [pdf]

Reducing the Variance in Online Optimization by Transporting Past Gradients
Spotlight presentation of our work on implicit gradient transport. Presented at the 2019 Conference on Neural Information Processing Systems (NeurIPS19), in Vancouver. [pdf, video]

learn2learn: A Meta-Learning Framework
Short presentation of learn2learn and some applications of meta-learning. Presented at the 2019 PyTorch Dev Conference, in San Francisco. [pdf, video]

Information Geometric Optimization
Tutorial on recent approaches using information geometric principles for optimization. Inspired by Yann Ollivier's presentation and James Martens' paper. Presented at the ShaLab reading group, in 2018. [pdf]

Managing Machine Learning Experiments
Presentation of randopt and how to use it to manage machine learning experiments. Presented at SoCal Python Meetup, in Los Angeles. [pdf]