Implicit Gradient Transport

NeurIPS 2019 in Vancouver, Canada
Problem

• We’re interested in online stochastic optimization.

• Gradient and accelerated methods do not converge due to stochastic gradients.

• SAG & co. are convergent, but not suited for the online setting.

• Can we design a simple method that converges for this setting?

\[
\theta_{t+1} = \theta_t - \eta g_t \\
g_t = \nabla_{\theta_t} \mathcal{L}(\theta_t)
\]
Method

• Yes!

• **Big Idea** Transport the *gradient information* from one parameter iterate to another.

• **Concretely** Compute gradient at a shifted point, and average it with previous gradient estimate.

• You get a variance-reduced stochastic gradient, readily **pluggable into any gradient method**. (e.g. Heavyball, Adam)

\[
\begin{align*}
\gamma_t &= \frac{t}{t + 1} \\
g_t &= \gamma_t g_{t-1} + (1 - \gamma_t)\hat{g}_t \\
\hat{g}_t &= \nabla \mathcal{L}(\theta_t + t(\theta_t - \theta_{t-1}))
\end{align*}
\]
Theory

• **Theorem 1** Plugged into SGD, the IGT gradient estimator converges at a rate of $\mathcal{O}(1/t)$.

• **Theorem 2** Plugged into Heavyball, the IGT gradient estimator achieves the accelerated rate $\mathcal{O}\left(\left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^t\right)$.

• **Caveat** Those results are only proved for quadratic $\mathcal{L}(\theta_t)$.
Experiments
Thank You

Reducing the variance in online optimization by transporting past gradients.

Learn more at bit.ly/31ySnEC or talk to us at Poster #2887, Tuesday 5:30pm.

Séb Arnold Pierre-Antoine Manzagol Reza Babanezhad Ioannis Mitliagkas Nicolas Le Roux