.. _sphx_glr_beginner_examples_autograd_two_layer_net_custom_function.py: PyTorch: Defining new autograd functions ---------------------------------------- A fully-connected ReLU network with one hidden layer and no biases, trained to predict y from x by minimizing squared Euclidean distance. This implementation computes the forward pass using operations on PyTorch Variables, and uses PyTorch autograd to compute gradients. In this implementation we implement our own custom autograd function to perform the ReLU function. .. code-block:: python import torch from torch.autograd import Variable class MyReLU(torch.autograd.Function): """ We can implement our own custom autograd Functions by subclassing torch.autograd.Function and implementing the forward and backward passes which operate on Tensors. """ def forward(self, input): """ In the forward pass we receive a Tensor containing the input and return a Tensor containing the output. You can cache arbitrary Tensors for use in the backward pass using the save_for_backward method. """ self.save_for_backward(input) return input.clamp(min=0) def backward(self, grad_output): """ In the backward pass we receive a Tensor containing the gradient of the loss with respect to the output, and we need to compute the gradient of the loss with respect to the input. """ input, = self.saved_tensors grad_input = grad_output.clone() grad_input[input < 0] = 0 return grad_input dtype = torch.FloatTensor # dtype = torch.cuda.FloatTensor # Uncomment this to run on GPU # N is batch size; D_in is input dimension; # H is hidden dimension; D_out is output dimension. N, D_in, H, D_out = 64, 1000, 100, 10 # Create random Tensors to hold input and outputs, and wrap them in Variables. x = Variable(torch.randn(N, D_in).type(dtype), requires_grad=False) y = Variable(torch.randn(N, D_out).type(dtype), requires_grad=False) # Create random Tensors for weights, and wrap them in Variables. w1 = Variable(torch.randn(D_in, H).type(dtype), requires_grad=True) w2 = Variable(torch.randn(H, D_out).type(dtype), requires_grad=True) learning_rate = 1e-6 for t in range(500): # Construct an instance of our MyReLU class to use in our network relu = MyReLU() # Forward pass: compute predicted y using operations on Variables; we compute # ReLU using our custom autograd operation. y_pred = relu(x.mm(w1)).mm(w2) # Compute and print loss loss = (y_pred - y).pow(2).sum() print(t, loss.data[0]) # Use autograd to compute the backward pass. loss.backward() # Update weights using gradient descent w1.data -= learning_rate * w1.grad.data w2.data -= learning_rate * w2.grad.data # Manually zero the gradients after updating weights w1.grad.data.zero_() w2.grad.data.zero_() **Total running time of the script:** ( 0 minutes 0.000 seconds) .. container:: sphx-glr-footer .. container:: sphx-glr-download :download:`Download Python source code: two_layer_net_custom_function.py ` .. container:: sphx-glr-download :download:`Download Jupyter notebook: two_layer_net_custom_function.ipynb ` .. rst-class:: sphx-glr-signature `Generated by Sphinx-Gallery `_