.. _sphx_glr_beginner_examples_tensor_two_layer_net_numpy.py: Warm-up: numpy -------------- A fully-connected ReLU network with one hidden layer and no biases, trained to predict y from x using Euclidean error. This implementation uses numpy to manually compute the forward pass, loss, and backward pass. A numpy array is a generic n-dimensional array; it does not know anything about deep learning or gradients or computational graphs, and is just a way to perform generic numeric computations. .. code-block:: python import numpy as np # N is batch size; D_in is input dimension; # H is hidden dimension; D_out is output dimension. N, D_in, H, D_out = 64, 1000, 100, 10 # Create random input and output data x = np.random.randn(N, D_in) y = np.random.randn(N, D_out) # Randomly initialize weights w1 = np.random.randn(D_in, H) w2 = np.random.randn(H, D_out) learning_rate = 1e-6 for t in range(500): # Forward pass: compute predicted y h = x.dot(w1) h_relu = np.maximum(h, 0) y_pred = h_relu.dot(w2) # Compute and print loss loss = np.square(y_pred - y).sum() print(t, loss) # Backprop to compute gradients of w1 and w2 with respect to loss grad_y_pred = 2.0 * (y_pred - y) grad_w2 = h_relu.T.dot(grad_y_pred) grad_h_relu = grad_y_pred.dot(w2.T) grad_h = grad_h_relu.copy() grad_h[h < 0] = 0 grad_w1 = x.T.dot(grad_h) # Update weights w1 -= learning_rate * grad_w1 w2 -= learning_rate * grad_w2 **Total running time of the script:** ( 0 minutes 0.000 seconds) .. container:: sphx-glr-footer .. container:: sphx-glr-download :download:`Download Python source code: two_layer_net_numpy.py ` .. container:: sphx-glr-download :download:`Download Jupyter notebook: two_layer_net_numpy.ipynb ` .. rst-class:: sphx-glr-signature `Generated by Sphinx-Gallery `_